Metabolism of phytol to phytanic acid in the mouse, and the role of PPARalpha in its regulation.

نویسندگان

  • J Gloerich
  • D M van den Brink
  • J P N Ruiter
  • N van Vlies
  • F M Vaz
  • R J A Wanders
  • S Ferdinandusse
چکیده

Phytol, a branched-chain fatty alcohol, is the naturally occurring precursor of phytanic and pristanic acid, branched-chain fatty acids that are both ligands for the nuclear hormone receptor peroxisome proliferator-activated receptor alpha (PPARalpha). To investigate the metabolism of phytol and the role of PPARalpha in its regulation, wild-type and PPARalpha knockout (PPARalpha-/-) mice were fed a phytol-enriched diet or, for comparison, a diet enriched with Wy-14,643, a synthetic PPARalpha agonist. After the phytol-enriched diet, phytol could only be detected in small intestine, the site of uptake, and liver. Upon longer duration of the diet, the level of the (E)-isomer of phytol increased significantly in the liver of PPARalpha-/- mice compared with wild-type mice. Activity measurements of the enzymes involved in phytol metabolism showed that treatment with a PPARalpha agonist resulted in a PPARalpha-dependent induction of at least two steps of the phytol degradation pathway in liver. Furthermore, the enzymes involved showed a higher activity toward the (E)-isomer than the (Z)-isomer of their respective substrates, indicating a stereospecificity toward the metabolism of (E)-phytol. In conclusion, the results described here show that the conversion of phytol to phytanic acid is regulated via PPARalpha and is specific for the breakdown of (E)-phytol.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A phytol-enriched diet induces changes in fatty acid metabolism in mice both via PPARalpha-dependent and -independent pathways.

Branched-chain fatty acids (such as phytanic and pristanic acid) are ligands for the nuclear hormone receptor peroxisome proliferator-activated receptor alpha (PPARalpha) in vitro. To investigate the effects of these physiological compounds in vivo, wild-type and PPARalpha-deficient (PPARalpha-/-) mice were fed a phytol-enriched diet. This resulted in increased plasma and liver levels of the ph...

متن کامل

Metabolism of phytol to phytanic acid in the mouse, and the role of PPARa in its regulation

Phytol, a branched-chain fatty alcohol, is the naturally occurring precursor of phytanic and pristanic acid, branched-chain fatty acids that are both ligands for the nuclear hormone receptor peroxisome proliferator-activated receptor a (PPARa). To investigate the metabolism of phytol and the role of PPARa in its regulation, wild-type and PPARa knockout (PPARa) mice were fed a phytolenriched die...

متن کامل

Prevention of vitamin A teratogenesis by phytol or phytanic acid results from reduced metabolism of retinol to the teratogenic metabolite, all-trans-retinoic acid.

Previous studies in our laboratory showed a synergistic interaction of synthetic ligands selective for the retinoid receptors RAR and RXR in regard to teratogenic effects produced in mice (M. M. Elmazar et al., 2001, TOXICOL: Appl. Pharmacol. 170, 2-9). In the present study the influence of phytol and phytanic acid (a RXR-selective ligand) on the teratogenicity of retinol and the RAR-selective ...

متن کامل

Effect of branched-chain fatty acid on lipid dynamics in mice lacking liver fatty acid binding protein gene.

Although a role for liver fatty acid protein (L-FABP) in the metabolism of branched-chain fatty acids has been suggested based on data obtained with cultured cells, the physiological significance of this observation remains to be demonstrated. To address this issue, the lipid phenotype and metabolism of phytanic acid, a branched-chain fatty acid, were determined in L-FABP gene-ablated mice fed ...

متن کامل

Phytanic acid is ligand and transcriptional activator of murine liver fatty acid binding protein.

Branched-chain phytanic acid is metabolized in liver peroxisomes. Sterol carrier protein 2/sterol carrier protein x (SCP2/SCPx) knockout mice, which develop a phenotype with a deficiency in phytanic acid degradation, accumulate dramatically high concentrations of this fatty acid in serum (Seedorf at al. 1998. Genes Dev. 12: 1189-1201) and liver. Concomitantly, a 6.9-fold induction of liver fatt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of lipid research

دوره 48 1  شماره 

صفحات  -

تاریخ انتشار 2007